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A~tract--The generalized kinematic equation for film thickness, taking into account the effect of phase 
change at the interface, is used to investigate the nonlinear stability of film flow down a vertical v, all. The 
analysis shows that supercritical stability and subcritical instability are both possible for the film flow 
system. Applications of the result to isothermal, condensate and evaporate film flow show that mass 
transfer into (away from) the liquid phase will stabilize (destabilize) the film flow. Finally. we find that 
supercritical filtered Waves are always linearly stable with regard to side-band disturbance. 

1. I N T R O D U C T I O N  

The problem of stability of isothermal film flow, without taking into account surface tension, was 
first considered by Yih (1954). Subsequently, the analysis of  this problem was refined by many 
authors, including Benjamin (1957), Yih (1963), Anshus (1965), Gjevik (1970), Lin (1971, 1974), 
Nakaya (1975). It was found that the film flow is linearly unstable for all finite Reynolds number. 
Also, Anshus (1965) reported that nonlinear instability occurred in the region near the upper 
branch of the neutral stability curve, however, Lin (1974) reported such instability as occurring 
near the lower branch of the neutral stability curve in the ~-Re  plane. 

The original theory of gravity-induced laminar film condensation flow was developed by Nusselt 
(1916), but the stability analysis of film flow with phase change was never investigated until the 
1970s. Bankoff (1971), Marshall & Lee (1973) and Lin (1975) successively presented stability 
analyses of condensate film flow. They showed that the critical Reynolds number is so small in 
all practical condensation processes that the film can be assumed to be unstable. However, in these 
studies, the mass transfer through the phase change at the interface was not considered. Later, 
Onsal & Thomas (1978), Spindler (1982) and Kocamustafaogullari (1985) presented this problem 
in a more detailed form. Their results point out that condensation is a stabilizing effect but 
evaporation is a destabilizing effect. Onsal & Thomas (1980) also presented the nonlinear stability 
analysis of condensate film flow, but there were some errors in their report and only disturbance 
of the same mode was considered. 

In this paper, we present the analysis of finite-amplitude side-band stability of  film flow down 
a vertical wall with phase change at the interface. The method of multiple scales is applied to solve 
the nonlinear generalized kinematic equation order by order and leads to a secular equation of 
Ginzburg-Landau type. Then the finite-amplitude and linear stability characteristics of a super- 
critical wave due to side-band disturbance are investigated. It will be seen that the results in the 
present study encompass the qualitative features of  the different results of the above-mentioned 
studies. 

2. G E N E R A L I Z E D  K I N E M A T I C  E Q U A T I O N  

The following derivation of governing equations and boundary conditions closely follows the 
formulation of Onsal & Thomas (1980), but with a different process to formulate a generalized 
kinematic equation for the free surface. Consider a layer of  an incompressible viscous fluid with 
phase change at the interface flowing clown a vertical plane, as shown in figure 1. The governing 
equations are two-dimensional mass, momentum and energy balance equations in the liquid phase, 
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the boundary conditions at the walt are the nonslip condition of velocity and a constant wall 
temperature. The boundary conditions at the liquid-vapor interface are the balance of normal and 
tangential stresses, the relation of interracial energy balances and the equality of liquid and 
saturated vapor temperatures. We assume all physical properties are constant and obtain the 
equations and boundary conditions as follows: 

Cb/* ~t' * 
a.v---- ~ + - -  = O, [1] ?y* 

?it* au* ?u* I gP* /a?'u * gZu*'~ 
~-at* ~"* o.-~ +~'* ay.* - pax* ~ - v ~ +  ~ )  +g, [21 

at'* av* v* at,* 1 aP* (c-v- a;v*) 
&--; + u * ~ + ay ---~ = - ; ay---; + v \ax*Z  + ~ j ,  [3] 

?T aT aT K ( 0 2 T  g 2 T )  
& ,  + u* - -  ~ + t' * - -  = - -  + [41  ay* pCp \ax*2 ay*2j' 

w*=0,  v * = 0 ,  T = T ~  at y * = 0 ;  [5] 

o,,.[ 
P* + 2pro- ~ 1 + (""l:l E o2,,,r ax,/j 

+ x-'h,~'-p-' ~.-' (,~ - l~ # ~  a..<* o.'~*/ l + ta.-<*,, _i 
I 

= P~, [ 6 ]  

ey* F ~ + 4 8x----g c~x----- ~ Lt, a.-7;) - 1 = 0, [7] 

\~y* ax*aT* -o  ~,-~7 -;+~'*--~*a,:* =o,  [81 

T = T ~  at y * = h *  [9] 

Where 

U*, U* 

t * ~  
p * =  

g =  
V.~-. 

p =  
K =  
T =  

Tw= 
Ts= 
G =  

h m = 

0"~---- 

? =  

velocity in the x*- and y*-directions, respectively, 
time, 
pressure, 
gravitational acceleration, 
kinematic viscosity, 
density, 
thermal conductivity, 
temperature, 
wall temperature, 
saturated vapor temperature, 
specific heat, 
latent heat of phase change, 
vapor pressure, 
surface tension, 
ratio of vapor density to liquid density 

and 

h* = height of film thickness. 
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We introduce the stream function ¢,* and the following dimensionless quantities: 

ex*j (u*, v*). 

ug hZ' 
g ( l  -- 7)h~ '2 

U~'--- 
2v 

2rth* 

2 

(p*  - P~) 
P =  

pUff'- ' 

h *  
h = - -  h~' 

T-T~. 
L-T~ '  

( x , y ,  t )  = - -  
~ 1,* '1, ,*'  , , , ,o ,,o ha' / 

h* U~' 
Re = - - ,  

V 

( 
W=\p,v, i _,:5 , 

¢ = C o A T  

hr G ' 

N d = - -  
7P r '  

Pr = pvCp 
K ' 

&y* 

Pe  = Pr.  Re ,  

[lO] 

where the value of  A, B and their derivations are evaluated at h = 1. 
For  the linear stability analysis, we neglect the nonlinear  par t  o f  [25] and obtain the linearized 

equat ion 
~kryy = - 2  + 2 Re(Px + ~/:,., + ~k,.~.~y- ~kx ~,,.) - 2-'~b,~,, [I 1] 

Py = - 2  Re-I  @xyy + ~-~(@>.@.,x - @.,@.~y + @~,) - ~2Re-'@ ..... [12] 

~by>. = ~ Pe(~by0x - ~kxOy + 0,)  - 2"-0 ..... [13] 

@ = @ , = ~ % = 0 ,  0 = 0  at y = h ;  [14] 

P + 22 Re-I~%.(1 + ~'-h.~) (1 - 2-'h~)-' + ~- 'WRe-]  h,~ 

x (I + 2-'h~) -3-' + (7 - 1)Nd R e - :  (0.v- :t2h~O~) 2 (1 + :~-'h~) -I = 0, [15] 

@,.~.. = ~ :~b.~.~ + 4.22~k~,.hx(1. - : t -  2L2,-mn~) , [16] 

¢(Oy - :t~h.~O.,) - ~ Pc(h, + ~,xh., + ~,~) = 0, [17] 

0 = 1  at y = h .  [18] 

It is noted that  [17], derived from the energy balance, will be used to determine the time evolution 
of  the film thickness, and we call it the generalized kinematic condition.  If ~ > 0, then [17] is used 
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Figure 1. The flow system: (a) isothermal film flow; (b) condensate film flow; (c) evaporate film flow. 

for the case of condensate film flow; if ~ > 0, [17] is used for evaporative film flow; and if ~ = 0, 
[17] reduces to the usual form of the kinematic condition for isothermal film flow. 

Since the long-wavelength (small wavenumber =, modes are the most unstable ones for film flow, 
we expand if, P and 0 in the following form: 

¢ = ~0 + ~ ,  + " ,  " ]  

P = P0 + ~PI + "' " I [t9] 

0 = 00 + ~0t + ' ' ' .  

The above expression is then substituted into the system [11-18], which is then solved order by 
order. The zeroth- and first-order solutions are then substituted into [17] and h,, which appeared 
in the first-order solution of [17], eliminated. This yields the following nonlinear generalized 
kinematic equation, which is simpler to handle: 

h, + A (h ) + B(h )h.~ + C (h )h¢x + O(h )h ........ + E(h )h~ + F(h )h~hx.¢.¢ + 0 (~-') = 0, [20] 

where 

A (h) = ~ 1 - 

Pe 

5~ ~ h-', 
B(h) = ( 2 - ~ 0  ¢ - 4 - ~ r J  

C(h) = 8 c ~  Reh  6, 

~2 
D(h) = ~ -  W R e - ~ h  3, 
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and 

E(h) = - ~--de I -  ~ + T ~  Reh~ 

F(h) = =3W Re -'-''3 h:. 

3. STABILITY ANALYSIS 

If the Nusselt assumption is adopted for the base flow, then [22], for the unperturbed state (only 
~'0 and 00 are considered here), is 

2h'-h, = 0. [21] 
• c~ Pr Re h 

dr/ drl dzr/ 04r/ 
~+A ' r /+B~x+C- -+Ddx"  ~ = 0 .  

Assuming the normal mode solution to be 

r /=  F exp[i(x - dt)]+ ff exp[ - i (x  - dt)], [27] 

the complex wave celerity corresponding to the linear stability problem is given by 

d = d, + id~ = B + i(C - O - , 4 ' )  

( 7 ~ 6 . 0  4P-r5 y),, + [1~ _~3 ~ ( 3 ) ] 1  = 2 i ~ R e  T WRe--'3 ~Ree - . [28] 

It is noted that, from the expression for the wave speed d~, long waves in a liquid film travel at 
approximately twice the speed of the unperturbed surface. Also d~ = 0 gives the neutral stability 
curve, 

[261 

From which it is easy to find 

= h - 3  [221 

If I~h= [ << 1, i.e. the variation of film thickness for the base flow is very small, then it is reasonable 
to assume that the local nondimensional thickness = 1. Thus, the nondimensional film thickness 
for the perturbed state may be expanded in the following form: 

h = I + r/ [23] 

where 37 is the perturbation of the thickness. From [22], it is clear that when 

Re >> ~ ~[Pr, [24] 

the above expansion is valid. Since ¢ is usually very small the expansion of [23] may be used for 
a wide range of applications. 

Substituting [23] into [20], keeping terms up to O(r/3), leads to the evolution of r/: 

r/~ + A 'r/ + Br/x + Cr/x= + Drl . . . .  

-- - [ T r / 2 + T  r / 3 + ( s ' r / + T r / :  r/"+ 2 r/=., 

( ° )  1 + D'r/+_~_r/2 r~ ....... +(E+E,r / ) r /~+(F+F,r l ) r /=r /  .... +O(t / ' ) ,  [25] 

where the value of A, B and their derivations are evaluated at h = 1. 
For the linear stability analysis, we neglect the nonlinear part of [25] and obtain the linearized 

equation 
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1-5 :e' Re - -5- W Re - :3 - ~ 1 - = 0. [29] 

For  the nonlinear  stability analysis, we use the method of  multiple scales, according to 

a t~Ot+e-~-~+E'a t z ,  a x ~ a x + e ~ x l ,  rT(e,x.x. , t , t . , t , . )=OT,+Ezrb+e:)73,  [30] 

where E is a small parameter ,  then [25] becomes 

(L0 + eLi + e2L2)(Erh + e-'r/.. + ¢3rh) = - E-'N_~ - E 3 N 3 ,  [31] 

where 

a A '  v 02 a~ 
Lo = ~ + + B ~ + C Ox-----5_ + D Ox---- q, 

O BO_~._ L,=~-~+ Ox, + 2 C 0 - ~ + 4 D  033 O 
Ox Oxt Ox Ox~' 

O 02 O 02 
L'- = -~z + C ~ + 6D Ox--S Ox--~l , 

A" 
N,_ = -~- Pl~ + B'rh rhx + C'rh rh ...... + D'q, th ....... + erl2tx + Frhxrh ..... 

and 

B" 
N3 = A"rhth + q~+B'(rhrh.~+rhrhx,+q,.~q~)+-~-q~rh.,+C'(qt.~xrh+q,rh~x+2q,rh.~.~) 

C "  4 D" 2 +TrI~n ,~ .~+D' (n ,  ........ rh+Vhqz,  x~.~, + q,~h ..... , ) + T n ,  rh ........ + E(Z~/,.~rL..~ 

+ 2rh~,, rh~,) + E'Ph rl ~ + F(rh.,~.,qz+ + r/~ ..... the,, + th, r/t.,.,~, + r/t.,r/z~+,) + F ' r  h rh, r/t.+.,++. 

Equat ion  [31] is solved order  by order; the O(¢) equat ion is LoPh = 0, the solution o f  which is 
in the form 

rh = F (xt, tl, h)exp[i(x - drt )] + C.C., [32] 

then the solution o f  r/, and the secular condi t ion for O(¢ 3) are 

r/, = C~ F + exp[2i(x - d+t)] + C.C. [33] 

and 

respectively, where 

and 

OF O'-F _~ 
Ot--, + D, ~ - E diF + (E, + iG)F2r = O, 

C~ = Cir + iC, = (16D - 4C - A)  -~ [(A + 12C - 6D)  - 2iB], 

DI = C - 6D, 

El = ( - 4 A  - 15C + 3D) + (4A - 6C + 2 1 D ) C t r -  2BC, 

[34] 

F~ = B + 2BCzr + (4A - 6C + 2 1 D ) C ,  

We shall use [34] to s tudy the nonlinear  behavior  o f  film flow. For  a filtered wave, there is no 
spatial modula t ion  and the diffusion term in [34] vanishes. The solution o f  this equat ion may be 
written as 

/ '~  = a exp( - ibh). [35] 

Substituting [35] into [34], neglecting the second term, we obtain the following results: 
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and 

( di ) ''2 [36a] 
c a  = \ E , J  

(d~)  [36b] e:b= Fl ~ . 

From the form of ca one knows that in the linear unstable region (a~ > 0) the condition for existence 
of a supercritical wave is EI > 0 and 2ca is just the final amplitude. On the other hand, in the linear 
stable region (di < 0) if El < 0, then the film flow has the behavior of subcritical instability and 2ca 
is the threshold amplitude. 

4. S IDE-BAND STABILITY ANALYSIS  

It is known from experiments that precisely controlling the wave motion at a given mode is an 
extremely difficult task. In laboratories, the presence of  side-band disturbance is practially 
unavoidable. Studies on the mechanism of this disturbance have been published by Eckhaus (1965), 
Stuart & Diprima (1978) and Keffe (1985). In this section we examine whether a filtered 
finite-amplitude wave of film flow with phase change is stable with respect to side-band disturbance. 
Let the amplitude F be in the following form: 

F = F~ + ~ [Ft (t:) exp(iGi xl) + F2 (t:) exp( - iGi xl)] exp( - ibt2), [37] 

where F~o represents the equilibrium state and the other term represents the side-band disturbance 
with 6 << 1 and GI = O(l).  Substituting this expression into [34] and collecting the coefficients of 
& exp[i(GiXl- bt:)] and 6 exp[-i(Glxt + bt:)], the linear coupled equations of  F~ and F2 are 
obtained as follows: 

~ VFI] [-H,I H I : ] F F I ] = 0 ,  [38] 
~LrJ+L.~, H=jL Jr, 

where 

and 

• -'d {F''~ iF [E- Zdi\ (E -Zdi) 
j 

Considering only the linear stability of the supercritical stable wave, one can write the solution of 
[38] a s  

the eigenvalue A in the above solution, after solving the eigenvalue problem of [38], is given by 

A = ½{ - (HI,  + H,_,) _ [(Ht, + H.,,)'- - 4(HI.  H ~ :  - H I 2 H , _ O ] '  : } .  [40] 

The stable cond i t ion  o f  side-band disturbance is A < 0, and this cond i t ion  can be wr i t ten as 

D, < 0. [41] 

In this study, from the definition of  D,, we find that the linear stable condition of  side-band 
disturbance is independent of the effect of  phase change. Also, we find the supercritical wave (~ > 0, 
El > 0) is stable with regard to side-band disturbance (D~ < 0). 

5. RESULTS AND D I S C U S S I O N  

The linear stability analysis yields the neutral stability curve which separates the or-Re plane into 
two regions; namely, the linear unstable region where small disturbances grow with time and the 
M,F. 13sb'--F 
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Figure 2. Stability curve of isothermat film flow: - - - ,  

side-band neutral stability curve. W = 1 2 . 3 4 7 .  
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Figure 3. Stability curve of condensate film flow: - - -  

side-band neutral stability curve. ~; = 0 . 0 8 7 2 ,  P r  = _ . 6 _ ,  

W = 1 2 , 3 4 7 .  

linear stable region where small disturbances decay with time. For the purpose of  numerical 
calculations, we take the temperature at the interface to be T~ = 373 K, and the temperature 
difference between the wall and interface as Ts - T, = 4- 47 K. Under such temperature conditions, 
the values o f  related nondimensional  parameters are W = 12,347 and I~l =0 .0872  (with phase 
change), I~1 = 0 (without phase change). Figure 2 shows the neutral stability curve for an isothermal 
film flow which consists o f  a straight line (~ = 0) and a curve, these two lines intersect at the critical 
point ~ = 0, R = 0. Figure 3 shows the neutral stability curve for condensate film flow which has 
a limit point corresponding to a critical Reynolds number, 

for ¢ O. [42] 

If the Reynolds number is smaller than the critical Reynolds number, then the disturbance of  any 
mode is linearly stable. Figure 4 shows the linear neutral curve for an evaporating film flow which 

0.15 

< 

0 5 10 15 

Re 

Figure 4. Stabil i ty curve of  evaporate fi lm flow: - - - ,  side-band neutral stability curve. ~ = -0 .0872 ,  
P r = 2 . 6 2 ,  W =  [2,347. 
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Figure 5. Threshold amplitude in the subcritical unstable region: ----- (~ -- 0.0872), condensation; 
isothermal: - - -  (~ = -0.0872), evaporation. W = 12,347, Pr = 2.62. 

has a bottom corresponding to a cut-off wavenumber. If the wavenumber is smaller than the cut-off 
wavenurnber, then the disturbance at any Reynolds number is linearly unstable. 

From [28], we find that the increase in the parameters of surface tension, HI, and phase change, 
~, have a stabilizing effect on the film flow system. The increase in the Prandtl number plays a dual 
role: stabilizing the evaporating film flow but destabilizing the condensate film flow. These linear 
theory results are, in general, in agreement with the results of previous studies (Onsal & Thomas 
1978; Spindler 1982; Kocamustafaogullari 1985). 

The nonlinear stability analysis is used to study whether the finite-amplitude disturbance in the 
linear stable region will cause instability (subcritical instability), as well as to study whether the 
subsequent nonlinear evolution of disturbance in the linear unstable region will develop into a new 
equilibrium with finite amplitude (supercritical stability) or grow to explosion. By inspection of the 
characteristics of [34], one finds the negative value of EI will make the system unstable. Such 
instability in the linear stable region is called subcritical instability; i.e. when the disturbance 
amplitude is larger than the threshold amplitude, then the amplitude will increase although the 
prediction by linear theory is stable. On the other hand, such instability in the linear unstable region 
will cause the system to reach an explosive state which could be considered as the solution of a 
complex pattern. 

As shown in figures 2 -4  by the hatched area near the neutral stability curve, it is observed that 
both subcritical instability (d~ < 0, E~ < 0) and the explosive solution (d~ > 0, El < 0) are possible for 
the isothermal, condensate and evaporating film flows. It is observed that supercritical stability 
(d~ > 0, El > 0, unhatched area in the linear unstable region) is also possible. In such a case, filtered 
waves are always linearly stable with regard to side-band disturbance. 

It is interesting to note that Anshus (1965) predicted subcritical instability for isothermal film 
flow, but he did not discover the explosive solution in the region near the lower branch of the 
neutral stability curve. On the other hand, Lin (1974) found that explosive solutions having the 
form of a solitary wave are possible, the Onsal & Thomas (1980) indicated that subcritical 
instability is not possible for condensate film flow. In our view, these results of previous studies 
perhaps expressed some aspects of the system but did not give a complete picture. Also, Onsal & 
Thomas (1980) did not accurately treat the result of second harmonic resonance because they 
focused on the expression of coefficient b of B but not the complete form of bA " in equation (29) 
of their paper. If we check in detail the results of their equations (29), (31) and (42), we find that 
the wavenumber of the second harmonic resonant will not have as simple a form as that of equation 
(40) in their paper. 

Figure 5 displays the threshold amplitude in the subcritical unstable region with different values 
of ~. It is found that decreasing the phase change parameter or increasing the Reynolds number 
will decrease the amplitude. Also, the threshold amplitude in the region near the lower branch of 
the neutral stability curve is smaller than that in the region near the upper branch of the neutral 
stability curve for the case of condensate film flow. 
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Figure 6. A m p l i t u d e  o f  a supercrit ical  wave:  - - - - -  
(,~ = 0.0872) ,  condensat ion;  - - ,  i sothermal;  
(~ = - -0 .0872) ,  evapora t ion .  R e =  10, W =  12,347, 
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Figure  7. A m p l i t u d e  o f  a supercrit ical  wave:  - - - - -  
(c~ = 0.0872) ,  condensat ion;  , i sothermal;  
( ¢ = - 0 . 0 8 7 2 ) ,  evaporat ion .  ~ = 0 . 0 5 ,  W = 1 2 , 3 4 7 ,  

Pr = 2.62. 

Figures 6 and 7 display the finite amplitude of a supercritical wave. The parameters ~,., and cq,, 
in figure 6, indicate the wavenumber at the upper and lower bounds of the linear unstable region 
in the ¢z-Re plane. We find that increasing the phase change parameter reduces the magnitude of 
the finite amplitude. As already explained by 12nsal & Thomas (1978) and Spindler (1982), the 
kinetic interpretation is as follows. Examining, for instance, the case of condensation (evaporation), 
the film thickness at the trough of a wave is smaller than at the crest. Hence, the rate of phase 
change is a little larger at the trough and, consequently, an excess of condensing liquid (evaporating 
vapor) appears compared to what happens at the crest. This leads to a smaller (larger) wave 
amplitude. It is also of note that the relative region of existence of a supercritical wave for 
condensate film flow is larger than that for isothermal and evaporate film flow. 

Figure 8 shows that the increase in the magnitude of the wave speed E2b, due to nonlinear effects, 
is weakly affected by the phase change parameter but is strongly enhanced by increasing Reynolds 
number Re. 

0 . 2 - -  

O.1 

O 

I 
f 

/ 

/ 

- 0 .1  
0 

/ 

F I I 
5 10 15 

Re 

Figure 8. T h e  increment  o f  w a v e  speed: - - - - -  (~ = 0.0872) ,  condensat ion;  
(¢ = - 0 . 0 8 7 2 ) ,  evapora t ion .  ~ = 0.I ,  W = 12,347, Pr = 2.62. 

~, i sothermal;  - - -  
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6. CONCLUSIONS 

The stability of film flow with phase change at an interface is investigated by the method of 
perturbation. In linear theory, any Reynolds number is unstable for the cases of isothermal and 
evaporate film flow and a finite critical Reynolds number exists in the case of condensate film flow. 
In nonlinear theory, it is shown that both subcritical instability and supercritical stability are 
possible. 

For the cases of isothermal and evaporating film flow, subcritical instability is possible only in 
the region near the upper bound of the linear stable region in the x-Re plane. But there are two 
regions, one near the upper bound and the other near the lower bound of the linear stable region, 
where subcritical instability is possible in the case of condensate film flow. Increasing the Reynolds 
number or decreasing the phase change parameter will reduce the threshold amplitude in the 
subcritical unstable region. 

The supercritical wave is possible in the region between the two explosive regions and the upper 
bound of the linear unstable region. It is found that an increase in the phase change parameter 
reduces the amplitude of the supercritical wave, while, increasing the Reynolds number increases 
the nonlinear wave speed. Also, the supercritical filtered waves are always linear stable with regard 
to side band disturbance and the mechanism of side-band disturbance, in our study, is independent 
of the effect of phase change. 

Finally, we conclude that the effect of mass transfer at the interface will strongly modify the 
stability characteristics of the film flow when phase change is considered, and condensation 
(evaporation) is more stable (unstable) than in the case of isothermal film flow. 
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